
www.manaraa.com

Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2018

Reducing labeling complexity in streaming data
mining
Yesdaulet Izenov
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

Part of the Artificial Intelligence and Robotics Commons, and the Computer Engineering
Commons

This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital
Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital
Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Izenov, Yesdaulet, "Reducing labeling complexity in streaming data mining" (2018). Graduate Theses and Dissertations. 16383.
https://lib.dr.iastate.edu/etd/16383

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F16383&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F16383&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F16383&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F16383&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F16383&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F16383&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=lib.dr.iastate.edu%2Fetd%2F16383&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=lib.dr.iastate.edu%2Fetd%2F16383&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=lib.dr.iastate.edu%2Fetd%2F16383&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/16383?utm_source=lib.dr.iastate.edu%2Fetd%2F16383&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

www.manaraa.com

Reducing labeling complexity in streaming data mining

by

Yesdaulet Izenov

A thesis submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Major: Computer Engineering (Software Systems)

Program of Study Committee:
Srikanta Tirthapura, Major Professor

Chinmay Hegde
Neil Zhenqiang Gong

The student author, whose presentation of the scholarship herein was approved by the program
of study committee, is solely responsible for the content of this thesis. The Graduate College will
ensure this thesis is globally accessible and will not permit alterations after a degree is conferred.

Iowa State University

Ames, Iowa

2018

Copyright © Yesdaulet Izenov, 2018. All rights reserved.

www.manaraa.com

ii

TABLE OF CONTENTS

ABSTRACT .. iii

CHAPTER 1. INTRODUCTION .. 1

CHAPTER 2. REVIEW OF LITERATURE ... 3

CHAPTER 3. HOEFFDING TREES ... 4

Decision Trees ... 4

Visual Example for Decision Tree Construction ... 7

Hoeffding Tree Algorithm .. 10

CHAPTER 4. FRUGAL HOEFFDING TREES ... 12

CHAPTER 5. EXPERIMENTAL STUDY .. 14

Datasets .. 14

Experiment Setup .. 14

Performance Metrics .. 15

Hoeffding Tree Performance ... 16

CHAPTER 6. CONCLUSION ... 25

REFERENCES ... 26

www.manaraa.com

iii

ABSTRACT

Supervised machine learning is an approach where an algorithm estimates a mapping

function by using labeled data i.e. utilizing data attributes and target values. One of the major

obstacles in supervised learning is the labeling step. Obtaining labeled data is an expensive

procedure since it typically requires human effort. Training a model with too little data tends

to overfit therefore in order to achieve a reasonable accuracy of prediction we need a minimum

number of labeled examples. This is also true for streaming machine learning models. Maintaining

a model without rebuilding and performing a prediction task without ever storing input samples are

the key concepts of streaming machine learning models. A successful and widely used streaming

model is the Hoeffding tree which has large labeling complexity. In this work, we present Frugal

Hoeffding tree, a variation of the Hoeffding tree that uses less labeled data, and provides similar

performance as the original Hoeffding tree. We conduct experiments on large real-world datasets

where we compare the performances of traditional batch decision trees, the Hoeffding tree and

the Frugal Hoeffding tree. We show that the Frugal Hoeffding tree consumes less labeled data

yet can achieve classification performance similar to the Hoeffding tree.

www.manaraa.com

1

CHAPTER 1. INTRODUCTION

We have many organizations that have terabytes of data that is produced everyday.

Millions of transactions are being recorded in financial organizations, millions of calls are made

everyday and web logs are continuously being produced every minute and these are only a few

examples of application domains that have large-scale data. These examples constitute that the

amount data has tremendously increased in many application domains and it has become almost

impossible to store the data in memory. Therefore many of the machine learning models are

being reconsidered and modified in a way that large scale data could be processed and analyzed

using clusters of computational nodes.

Another important aspect to mention is the many of the machine learning models have

been designed with an assumption that input data can fit in memory. However today this as-

sumption is often violated thus in designing machine learning models, memory and computational

resources are necessary to be taken into an account. In order to address these requirements

streaming machine learning models are being designed, and therefore streaming machine learn-

ing models have been an active research area last couple of decades. Streaming algorithms are

aimed to design models that utilize significantly less memory and computational resources be-

cause these models don’t store input data. Streaming algorithms are useful only if they provide

similar performance results as their batch analogs.

An early and effective machine learning method are the decision tree models. Decision

trees have been successful and applied in many application domains providing a high quality

prediction. Decision trees are attractive because of interpretability, simplicity, and robustness to

outliers. A decision tree is constructed building a tree structure and it is grown to its maximum

height. In a greedy manner decision tree algorithm finds the feature that will yield the largest

information gain for a given node and various performance pruning techniques are applied in order

to avoid overfitting. Decision tree algorithms have been evolved and a number of batch variations

have been developed such as ID3(Iterative Dichotomiser 3) [1], C4.5 [2] and CART [3].

www.manaraa.com

2

One of the widely used streaming variation of decision trees is Hoeffding trees. Hoeffding

trees were originally proposed by Domingos and Hulten [4] and have been found further devel-

opments in many research works. Hoeffding tree is an incremental online decision tree algorithm

that is able processes massive data streams. The main idea behind the Hoeffding trees is that the

model builds an effective decision tree structure that has a mathematical guarantee of choosing

best split nodes based on a subset of data and it produces asymptotically similar tree structure

to the ones produced by a batch learner.

Like batch supervised machine learning models, streaming supervised machine learning

models require a large amount of labeled data in order to achieve a high accuracy prediction.

In large-scale data applications, this number of required labeled data can reach millions or even

more units. Preparing and labeling such a large data is costly to label, and therefore in designing

machine learning models one needs reduction of labeling complexity requirement additional to

memory, computation and high prediction criteria.

In this work we propose Frugal Hoeffding tree model, a modification of the original Ho-

effding tree that utilizes less labeled data and we show that it can achieve similar performance

results as the original Hoeffding tree. We found that reduction of labeling effort in streaming

algorithms hasn’t been analyzed yet in research works. Our work shows that reducing the num-

ber of labeled data necessary for streaming Hoeffding tree can be achieved by applying several

modifications and can provide similar performance results.

The contributions of this study are two-fold. First, this study proposes a simple concept

which allows to achieve reduction of labeling complexity and it can be used in many streaming

machine learning models too. In order to demonstrate it we apply the concept in the Hoeffding

tree model. Second, the study evaluates the effectiveness of Frugal Hoeffding tree and compares

to the original Hoeffding tree model. We show experimental results on three real-world datasets

and compare performances of the batch and streaming decision tree algorithms.

www.manaraa.com

3

CHAPTER 2. REVIEW OF LITERATURE

Domingos and Hulten [4] initially proposed VFDT(Very Fast Decision Tree learner) for

categorical data that used the Hoeffding bound. The original algorithm assumes that streaming

data has a stationary distribution. The designed algorithm was evaluated on a web-scaled dataset

and the experimental results showed that the Hoeffding tree outperformed C4.5 model and also

they showed that less amount of memory and computational resources were utilized by the

streaming Hoeffding tree algorithm.

Hulten and Domingos [5] proposed CVFDT(Concept adapting Very Fast Decision Tree

learner) algorithm that stays updated and efficient for continuously changing data streams also

known as concept drift. Many machine learning algorithms and VFDT have the assumption that

the streaming input data drawn from a stationary distribution. CVFDT utilizes a window-based

concept and grows an alternate subtree that is replaced whenever the old tree becomes less

efficient. The replacement happens when a concept drift occurs and makes the current model

less accurate. The performance of CVFDT gives a nearly equivalent accuracy results as if VFDT

is repeatedly grown on a window of samples.

Jin and Agrawal [6] revisit the Hoeffding tree model and propose the following improve-

ments. They provide an efficient variation of the Hoeffding tree that can processes categorical

and numerical attributes and achieve reduction in execution time. Also they propose a modifica-

tion that utilizes the properties of heuristic evaluation function i.e. information gain and gini, and

reduce the number of sample sizes required to obtain the bound condition for a split node.

www.manaraa.com

4

CHAPTER 3. HOEFFDING TREES

Decision Trees

One of the most effective and widely-used classification methods is decision tree learning.

These type of approaches induce models in the form of tree structures, where each node contains

a split rule on an attribute, each branch from a node corresponds to a possible outcome of the

split rule, and each leaf contains a class prediction. The label for an input example is obtained

by passing the example down from the root to a leaf, testing the appropriate attribute at each

node and following the branch corresponding to the attribute’s value in the example. A decision

tree is learned by recursively replacing leaves by split nodes, starting at the root. The attribute

to split at a node is chosen by comparing all the available attributes and choosing the best one

according to some heuristic measure. Classic decision tree learners like ID3 [1], C4.5 [2] and

CART [3] assume that all training examples can be stored simultaneously in main memory, and

thus severely limited in the number of examples they can learn from. Disk-based decision tree

learners like SLIQ [7] and SPRINT [8] have been proposed. Despite the fact that these models

largely increase the size of usable data, it can be expensive in case of learning large and complex

tree structures. Steaming decision tree is a decision tree learner for extremely large and potentially

infinite datasets and this learner should require each example to be read at most once, and only a

small constant time to process it. This will make it possible to directly mine online data sources

without ever storing the examples, and to build potentially very complex trees with acceptable

computational cost.

Decision tree learning uses decision tree structure as a predictive model mapping obser-

vations about an item to conclusions about the item’s target value. Decision tree learning is a

common method used in data mining. The goal is to create a model that predicts the value of a

target variable based on several input variables. Decision tree construction algorithms generally

use top-down approach by choosing an attribute at each phase to split the given data set. Split-

www.manaraa.com

5

ting is based on the best attribute chosen at each phase and the process keeps on repeating on

each resultant subset recursively until the next splitting no longer adds value to the predictions.

Once the labeled example reaches a leaf v the model estimates the probabilities for each class as

Prk(v) = nk∑|C|
j=1 nj

(1)

where C is the total number of classes and nk is the number of training instances of the class k

at a leaf.

However, the probability estimates are weak since when calculating the estimated prob-

ability as the formulation above, where n is the number of training instances of the specified

class at a leaf and the denominator is the total number of training instances, nodes with a small

number of training instances will be assigned the same probability as nodes with a large number

of training instances. This is especially problematic for ranking, since it will result in many ties,

and training instances with the same probability can not be ordered. The problem is usually

addressed by smoothing the probability estimates to less extreme values. The most commonly

used smoothing method is the Laplace estimate, which calculates the expected probability as

Prk(v) = nk + 1∑|C|
j=1 nj + |C|

(2)

where C is the total number of classes and nk is the number of instances of the specified class

at a leaf.

Different algorithms use different formulae for predicting “the best attribute" to split a

node. There are two commonly used heuristics which are applied to each candidate subset, and

the resulting values are combined to provide a measure of the quality of the split. First common

heuristic is Gini index that measures heterogeneity or homogeneity of a node and it selects the

best attribute that yields a class distribution where the majority of training instances belong to

www.manaraa.com

6

the same class. Gini index is measured as

GI(v) = 1−
|C|∑
k=1

Prk(v)2 (3)

where Prv(k) is the number of samples that belong to class k divided by total number of samples

within a node v, see equation 1. Gini index is maximal if the classes are perfectly mixed i.e. the

instances at a node is uniformly distributed.

Second common heuristic is information gain that is based on the concept of entropy

used in information theory. In this work, we use information gain heuristic to choose the best

attribute for a split node. Entropy of a node v is measured as

H(v) =
|C|∑
k=1
−Prk(v) log2 Prk(v) (4)

Conditional entropy after splitting a node v based on an attribute A is measured as

H(v|A) =
∑
i∈A

Pr(A = i)H(l) (5)

where A is attribute value, Pr(A = i) is the number of samples that has the attribute value

equal to i divided by total number of samples within a node and H(l) is entropy measure of a

new leaf l which includes samples that have attribute A value equal to i.

Using information gain heuristic, we would like to select an attribute to split the decision

tree further such that the model gains knowledge as much as possible. Information gain is

measured as

G(v, A) = H(v)−H(v|A) (6)

where H(v) is entropy measure before a split and H(v|A) is entropy measure after the split based

on attribute A.

www.manaraa.com

7

Visual Example for Decision Tree Construction

Consider Table 1 as input dataset. The dataset has four attribute variables that are used

to predict whether an athlete plays a golf game. This task is a binary classification problem.

These features are weather related attributes and they are all categorical attributes. The fifth

column in Table 1 is the target variable i.e. true labels.

Table 1: The Weather Data.

Outlook Temperature Humidity Windy Play Golf
Rainy Hot High False No
Rainy Hot High True No

Overcast Hot High False Yes
Sunny Mild High False Yes
Sunny Cool Normal False Yes
Sunny Cool Normal True No

Overcast Cool Normal True Yes
Rainy Mild High False No
Rainy Cool Normal False Yes
Sunny Mild Normal False Yes
Rainy Mild Normal True Yes

Overcast Mild High True Yes
Overcast Hot Normal False Yes
Sunny Mild High True No

In order to start building a decision tree model we need a root node. At the root node we

need to decide which attribute would be the most efficient to classify i.e. the one that would give

the maximum information about data. Instead of selecting an attribute at random, the model

uses the information gain heuristic that was discussed above. Entropy measure before splitting

the initial dataset is H(root) = −(5
14 log2

5
14) − (9

14 log2
9
14) = 0.94 (see equation 4). Once

we measure the current entropy value we need to measure entropy after a split. Let the model

to consider first "outlook" attribute. In Figure 1, the model computes the entropy value after

splitting the root node based on "outlook" attribute.

H(root|outlook) = Pr(outlook = ”sunny”)H(leaf = ”sunny”)

+Pr(outlook = ”overcast”)H(leaf = ”overcast”)

www.manaraa.com

8

Figure 1: Decision tree construction. First level. Attribute selection for the root node.

+Pr(outlook = ”rainy”)H(leaf = ”rainy”)

= 5
14(−(3

5 log2
3
5)− (2

5 log2
2
5))

+ 4
14(−(4

4 log2
4
4)− (0

4 log2
0
4))

+ 5
14(−(2

5 log2
2
5)− (3

5 log2
3
5)) = 0.69 (see equation 5).

Having computed the entropy measures before and after the split based on "outlook" at-

tribute, we compute information gain which is G(root, outlook) = H(root)−H(root|outlook) =

0.25 (see equation 6). If we would compute information gain value for each attribute, we would

get the following values in Table 2.

Table 2: Informatin gain values for each attribute in the Weather dataset.

Attribute Information gain
Outlook G(root, outlook) = 0.25

Temperature G(root, temperature) = 0.05
Humidity G(root, humidity) = 0.17
Windy G(root, windy) = 0.07

According to Table 2, the model chooses the "outlook" attribute since it provides the

maximum value in terms of information gain heuristic. In another words, the "outlook" attribute

provides the maximum information i.e. it groups the input samples in a way that the input

samples with the same target values mostly gathered together.

Having set the root node, the model will look for the next best attribute to split in order

to further grow the tree. According to Figure 2, for the left node at the second level of the tree,

attribute "windy" is the best to split on.

www.manaraa.com

9

Figure 2: Decision tree construction. Second level. Attribute selection for the left
node.

After recursively splitting the leaf nodes, eventually the model gets the tree structure

shown in Figure 3. As it shown in Figure 3, for the right node at the second level, attribute

"humidity" provides the maximum value in terms of information gain.

Figure 3: Decision tree construction. Full tree.

Hoeffding Tree Algorithm

Hoeffding tree model uses Hoeffding bound [9] for construction and analysis of decision

tree. The Hoeffding tree is capable of learning from massive data streams with assumption that

the distribution generating examples do not change over time i.e. data distribution is stationary.

Hoeffding bound is used to decide the number of instances to be run in order to achieve a certain

www.manaraa.com

10

level of confidence. Consider a real-valued random variable r whose range is [0, R]. Suppose

we have made n independent observations of this variable, and computed their mean r̂. The

Hoeffding bound states that, with probability 1−δ, the true mean of the variable is at least r̂− ε,

where

ε =
√
R2 ln 1

δ

2n (7)

Using the above concept, the goal is to ensure that, with high probability, the attribute

chosen using n examples, where n is as small as possible, is the same that would be chosen using

infinite examples. LetG be true information gain and be information gain measured on a subset of

data. Assume G is to be maximized, and let Xa be the attribute with highest observed estimated

Ĝ after seeing n examples, and Xb be the second-best attribute. Let 4Ĝ = Ĝ(Xa)− Ĝ(Xb) > 0

be the difference between their observed heuristic values. Then given desired δ, the Hoeffding

bound guarantees that Xa is the correct choice with probability 1 − δ if n examples have been

seen at this node and 4Ĝ > ε. In other words, if the observed 4Ĝ > ε then the Hoeffding

bound guarantees that the true 4G > 4Ĝ− ε > 0 with probability 1− δ and therefore that Xa

is indeed the best attribute with probability 1− δ.

www.manaraa.com

11

Algorithm: Hoeffding Tree

Input: Let Ĝ be information gain function

Let ε be Hoeffding bound
Let HT be streaming Hoeffding Tree

Let S be a small set of labeled data

Initialize HT (S) in batch mode

For each sample s:

Sort s into leaf l using HT

Update counters of each attribute in l

Let Xi be ith attribute

Compute Ĝl(Xi) for each attribute

Let Xa be attribute with highest Ĝl

Let Xb be attribute with second-highest Ĝl

If Ĝl(Xa) - Ĝl(Xb) > ε

Replace l with decision node that splits on feature variable Xa

Add a leaf for each branches of the split

The algorithm above presents high-level algorithm for Hoeffding tree and this algorithm

forms the basis for our work. The algorithm uses information gain heuristic and the hyper

parameters can be chosen by cross validation approach.

www.manaraa.com

12

CHAPTER 4. FRUGAL HOEFFDING TREES

In order to achieve a high accuracy, supervised machine learning models need a lot of

data and supervised streaming machine learning models are not the exception. This means that

a lot of labeling effort is needed to achieve a high accuracy permormance.

One of the approach to reduce labeling complexity is utilizing confidence of prediction

that the model provides. For instance, classification model provides probability estimate for

each class given an input sample. Looking at these estimates, the model can provide very high

probability estimate for a certain class. This knowledge can be used as an indicator of prediction

confidence. Practically, probability estimates with high probability difference tend to be true

answer. Therefore asking for true answers to compare is unnecessary work. This concept can be

used in other supervised ML models as long as the model provides similar performance.

In this section we present a modification to the Hoeffding tree shown in the previous

section. As an instance arrives, the original Hoeffding tree model produces probability estimates

for each class given an instance. According to these probabilities a given instance is classified to

a class where it has the highest probability value. Looking at these probability estimates we are

also interested in the difference of first highest probability value and second highest probability

value. This difference can be used as a numerical measurement for prediction confidence.

Let’s consider the following example. Assume a binary classification problem and for an

incoming sample "A" the algorithm predicts that 80% that the sample belongs to class1 and 20%

belongs to class2. Also, for a sample "B" the model provides 40% and 60% probability estimates

respectively. The probability difference of sample "A" is 60% and 20% for sample "B". If the

difference is high enough then the input sample is being correctly classified. Updating the model

statistics by input samples that have high probability difference has less influence on the model’s

behavior. Instead we are interested in input samples that are difficult to classify and therefore

such input samples most likely to have less probability difference.

www.manaraa.com

13

Algorithm: Frugal Hoeffding Tree
Input: L - true labels

α - probability threshold
Let HT be streaming Hoeffding Tree

Let S be a small set of labeled data

Initialize HT (S) in batch mode

For each unlabeled sample s:

P = predict HT (s), vector of probabilities with one element for each class

let p1 be first highest probability in P

let p2 be second highest probability in P

if p1 − p2 < α:

label = L(s)

train HT (s, label)

Algorithm below illustrates abstract algorithm of the Frugal Hoeffding tree. In this study

we selected several values for α and set α equally for all leaves in order to demonstrate effect of

α in reducing labeling complexity however further work is needed for efficient α selection. Note

choosing α is important since it is the hyper parameter to control the number of labeled samples

to be needed. One can note that if α = 1 Frugal Hoeffding tree would become the original

Hoeffding tree. Generally we would like to minimize α and it can be chosen with respect to the

number of classes. Alternative way of α selecting is updating the value of α with respect to

classification error rate in the corresponding leaf.

In order to reduce the labeling effort in Frugal Hoeffding tree, the model is updated by

only uncertain observations. As we defined above uncertain observations are the ones that are

difficult to classify and therefore those inputs need to be labeled by experts. Probability threshold

α can be selected using cross validation and in the experimental study we show that as the model

trains the number of observations that need to be labeled decreases dramatically.

www.manaraa.com

14

CHAPTER 5. EXPERIMENTAL STUDY

Datasets

Adult Data Set [10]. This dataset is for predicting wage of a person. The dataset is taken

from UC Irvine Repository and consists of around 45,000 labeled records The problem can be

formulated as a classification problem by prediction whether income is above fifty thousand dollars

based on given attributes. The dataset consist of 14 (fourteen) attributes including categorical

and numeric features.

Covertype Data Set [11]. The dataset is predicting forest cover type using cartographic vari-

ables. The dataset includes areas in Roosevelt National Forest of northern Colorado and is

available from UC Irvine Repository. The classification problem can be established by predicting

6 types of covers using 54 (fifty four) numerical and categorical attributes. The total amount of

records is around 495,000.

KDD Cup 1999 Data Set [12]. This is a large dataset consisting of benign connections and

attack intrusions simulated in a military network environment. The dataset was used for The

Third International Knowledge Discovery and Data Mining Tools Competition and available at

UC Irvine Repository. The size of dataset is about 4,898,000 records consisting of 42 (forty two)

categorical and numeric attributes.

Experimental Setup

Experiment 1. We compare the Hoeffding tree with CART [3] and Random Forest [13] models.

We measure their performances and compare them in terms of precision, recall and error rate.

These algorithms are run in a batch mode in order to keep fairness in comparison.

Experiment 2. We run the original Hoeffding tree where it trains incrementally. During the

training, before we feed the model with new labeled train data we evaluate current performance

www.manaraa.com

15

of the model. We evaluate the model according to precision, recall and error rate. Also, we

run Frugal Hoeffding tree and evaluate its performance according to precision, recall and error

rate.

Experiment 3. In the third experiment we evaluate the labeling effort. We measure the number

of labeled data used during the training stage in order to achieve similar performance as it would

use all available labeled training data. By evaluating in this way, we can show that with less

labeled data we can achieve similar performance.

Performance Metrics

In order to evaluate the models, we use the following metrics: precision, recall, error rate

and the number of labeled data. Error rate is the number of incorrect predictions made as a ratio

of all predictions made. This is the most common evaluation metric for classification problems.

ErrorRate = FP + FN

P +N
(8)

Precision-Recall is a useful measure of success of prediction when the classes are very

imbalanced. In information retrieval, precision is a measure of result relevancy, while recall is a

measure of how many truly relevant results are returned. Precision is defined as the number of

true positives (TP) over sum of the number of true positives and the number of false positives

(FN) as

Precision = TP

TP + FP
(9)

while recall is defined as the number of true positives over sum of the number of true positives

and the number of false negatives (FN) and measured as

Recall = TP

TP + FN
(10)

www.manaraa.com

16

Hoeffding Tree Performance

As the first experimental case we use the Adult dataset. Table 3 shows the performance

results of random forest, CART and the original Hoeffding tree. In order to compare the models

fairly all three models firstly train on 35K of samples and then are tested on 10K of samples.

Random forest model outperforms CART and Hoeffding tree. The precision value of random

forest is around 74% whereas CART and Hoeffding tree are close to 62% and 71% respectively.

One can notice that Hoeffding tree has more precision rate then CART. However in term of

recall metric, Hoeffding tree is less efficient having only 53% whereas random forest and CART

have similar results landing close to 63%. Accuracy of random forest is the lowest as 15% and

Hoeffding tree has 17% outperforming CART that has 19% of error rate results.

Table 3: Adult Data Set. Model Comparison. Average result of seven trees.

Precision Recall Error Rate
Random Forest 74.3% 63% 14.6%

CART 61.6% 63% 18.9%
Hoeffding Tree 71.1% 53% 16.9%

In the following three figures, we compare performances of the original Hoeffding tree

and Frugal Hoeffding tree. Performing testing and training routine using 44 mini-batches and

each mini-batch contains 1K of samples. After testing current performance of both models we

then feed the models with the given mini-batch. However the proposed Frugal Hoeffding tree is

feed only by samples that the model is uncertain in its prediction. Figure 4 shows that we have

fairly similar precision rate results. Both models’ results converge around 75%. We have fairly

similar recall rate results in Figure 5. Both models’ results converge close to 60%.

www.manaraa.com

17

Figure 4: Adult Data Set. Precision performance per 1K samples. Blue line is precision
result of Hoeffding Tree. Red line is precision result of Frugal Hoeffding Tree.

Figure 5: Adult Data Set. Recall performance per 1K samples. Blue line is recall result
of Hoeffding Tree. Red line is recall result of Frugal Hoeffding Tree.

www.manaraa.com

18

Figure 6 shows classification accuracy of the models. Here we have also similar drops in

terms of classification error and they converge at around 15%.

Figure 6: Adult Data Set. Classification error per 1K samples. Blue line is error rate
result of Hoeffding Tree. Red line is error rate result of Frugal Hoeffding Tree.

Figure 7 shows the number of samples used in each mini batch. As you may note that

in every mini batch only around 500 of samples are used.

Figure 7: Adult Data Set. Labeling Complexity. Number of labeled samples used per
1K samples. Blue line is labeling complexity result of Hoeffding Tree. Red line is
labeling complexity result of Frugal Hoeffding Tree.

www.manaraa.com

19

As the second experimental case we use the Cover dataset. Table 4 shows the perfor-

mance results of random forest, CART and the original Hoeffding tree. In order to compare the

models fairly all three models firstly train on 400K of samples and then are tested on 95K of

samples. In this experiment Hoeffding tree performance is below than the other two models’ per-

formance. The precision of random forest and CART are 96.2% and 95.9% respectively, whereas

Hoeffding tree has 84.7%. In term of recall metric, Hoeffding tree is also less efficient having

only 87.7% whereas random forest and CART have 97.9% and 96% respectively. Accuracy of

random forest is the lowest as 3.4% and CART has 4.6% outperforming Hoeffding tree that has

16.1% of error rate result.

Table 4: Covertype Data Set. Model Comparison. Average result of seven trees.

Precision Recall Error Rate
Random Forest 96.2% 97.9% 3.4%

CART 95.9% 96% 4.6%
Hoeffding Tree 84.7% 87.7% 16.1%

In the following three figures, we compare performances of the original Hoeffding tree

and Frugal Hoeffding tree. Performing testing and training routine using 48 mini-batches and

each mini-batch contains 10K of samples. Figure 8 shows that we have fairly similar precision

rate results. Both models’ results didn’t converge and therefore it would most likely improve

providing more data. We have fairly similar recall rate results in Figure 9. This dataset wasn’t

enough for the convergence thus we used even larger dataset in the next experiment.

www.manaraa.com

20

Figure 8: Covertype Data Set. Precision performance per 10K samples. Blue line is
precision result of Hoeffding Tree. Red line is precision result of Frugal Hoeffding Tree.

Figure 9: Covertype Data Set. Recall performance per 10K samples. Blue line is recall
result of Hoeffding Tree. Red line is recall result of Frugal Hoeffding Tree.

www.manaraa.com

21

Figure 10 shows classification accuracy of the models. Here we have also similar drops

in terms of classification error. The error rate results for both models are below 20% after 40th

mini-batch.

Figure 10: Covertype Data Set. Classification error per 10K samples. Blue line is error
rate result of Hoeffding Tree. Red line is error rate result of Frugal Hoeffding Tree.

Figure 11 shows the number of samples used in each mini batch. As you may note that

in every mini batch the number of used labeled samples monotonically decreases.

Figure 11: Covertype Data Set. Labeling Complexity. Number of labeled samples used
per 10K samples. Blue line is labeling complexity result of Hoeffding Tree. Red line is
labeling complexity result of Frugal Hoeffding Tree.

www.manaraa.com

22

As the third experimental case we use the KDD dataset. Table 5 shows the performance

results of random forest, CART and the original Hoeffding tree. In order to compare the models

fairly all three models firstly train on 4M of samples and then are tested on 898K of samples. The

performances of all models are very high and close to each other. One of the reasons is having

very large dataset for the evaluation.

Table 5: KDD Data Set. Model Comparison. Average result of seven trees.

Precision Recall Error Rate
Random Forest 99.924% 99.909% 0.1329%

CART 99.921% 99.908% 0.1363%
Hoeffding Tree 99.898% 99.877% 0.1796%

In the following three figures, we compare performances of the original Hoeffding tree

and Frugal hoeffding tree. Performing testing and training routine using 103 mini-batches and

each mini-batch contains 50K of samples. Figure 12 shows that we have fairly similar precision

rate results. Both models’ results converges similarly. We have fairly similar recall rate results in

Figure 13. Both models’ results converges close to 99%.

Figure 12: KDD Data Set. Precision performance per 50K samples. Blue line is
precision result of Hoeffding Tree. Red line is precision result of Frugal Hoeffding
Tree.

www.manaraa.com

23

Figure 13: KDD Data Set. Recall performance per 50K samples. Blue line is recall
result of Hoeffding Tree. Red line is recall result of Frugal Hoeffding Tree.

Figure 14 shows classification accuracy of the models. Here we have also similar drops

in terms of error rates. They both converge similarly.

Figure 14: KDD Data Set. Classification error per 50K samples. Blue line is error rate
result of Hoeffding Tree. Red line is error rate result of Frugal Hoeffding Tree.

www.manaraa.com

24

Figure 15: KDD Data Set. Labeling Complexity. Number of labeled samples used per
50K samples. Blue line is labeling complexity result of Hoeffding Tree. Red line is
labeling complexity result of Frugal Hoeffding Tree.

Figure 15 shows the number of samples used in each mini batch. As you may note that in

every mini batch less than 300 (three hundred) of samples are used whereas the original Hoeffding

tree use 50K per mini batch.

To summarize the experiments, the main contribution is the observation that possibility

of reduction of labeling complexity by using probability estimates of the Hoeffding tree. It is

important to understand the impact of the smoothing (see equation 2) and the relationship

between the quality of probability estimates produced by the original Hoeffding tree. By using

the differences of the probability estimates we achieve the following. The performance of Frugal

Hoeffding tree is the same as the Hoeffding tree. The Frugal Hoeffding tree utilizes lesser amount

of labeled data to achieve the same performance result.

www.manaraa.com

25

CHAPTER 6. CONCLUSION

This work evaluated the Hoeffding tree model, a method for learning online from the

high-volume data streams. Hoeffding trees have strong guarantees of high asymptotic similarity

to the corresponding batch trees. Empirical studies show its effectiveness in taking advantage of

massive numbers of examples. In addition, we proposed Frugal Hoeffding tree, a modification of

Hoeffding tree that uses less number of labeled data providing similar performance results as the

original Hoeffding tree.

www.manaraa.com

26

REFERENCES

[1] R. Quinlan, “Induction of decision trees,” p. 81–106, Proc. Ninth ACM SIGKDD Interna-

tional Conference Knowledge Discovery and Data Mining, 1986.

[2] R. Quinlan, “C4.5: programs for machine learning,” Morgan Kaufmann Publishers Inc, 1993.

[3] J. Breiman, L. Olshen, R. Friedman, and C. J. Stone, “Classification and regression trees,”

Wadsworth International Group, 1984.

[4] P. Domingos and G. Hulten, “Mining high-speed data streams,” In Proceedings of the ACM

Conference on Knowledge and Data Discovery (SIGKDD), 2000.

[5] G. Hulten, L. Spencer, and P. Domingos, “Mining time-changing data streams,” In Proceed-

ings of the ACM Conference on Knowledge and Data Discovery (SIGKDD), 2001.

[6] R. Jin and G. Agrawal, “Efficient decision tree construction on streaming data,” Proc. Ninth

ACM SIGKDD International Conference Knowledge Discovery and Data Mining, 2003.

[7] M. Mehta, A. Agrawal, and J. Rissanen, “Sliq:a fast scalable classifier for data mining,” In

Proceedings of the Fifth International Conference on Extending Database Technology, 1996.

[8] J.C.Shafer, R.Agrawal, and M.Mehta, “Sprint: A scalable parallel classifier for data mining,”

In Proceedings of the Twenty-Second International Conference on Very Large Databases,

1996.

[9] W. Hoeffding, “Probability inequalities for sums of bounded random variables,” pp. 18–30,

Journal of the American Statistical Association, 1963.

[10] U. Repository, “Adult data set.” https://archive.ics.uci.edu/ml/datasets/Adult.

accessed on March 2018.

[11] U. Repository, “Covertype data set.” https://archive.ics.uci.edu/ml/datasets/

covertype. accessed on March 2018.

https://archive.ics.uci.edu/ml/datasets/Adult
https://archive.ics.uci.edu/ml/datasets/covertype
https://archive.ics.uci.edu/ml/datasets/covertype

www.manaraa.com

27

[12] U. Repository, “Kdd cup 1999 data set.” https://archive.ics.uci.edu/ml/datasets/

KDD+Cup+1999+Data. accessed on March 2018.

[13] L. Breiman, “Random forests,” p. 45:15–32, Machine Learning, 1984.

https://archive.ics.uci.edu/ml/datasets/KDD+Cup+1999+Data
https://archive.ics.uci.edu/ml/datasets/KDD+Cup+1999+Data

	2018
	Reducing labeling complexity in streaming data mining
	Yesdaulet Izenov
	Recommended Citation

	tmp.1528995973.pdf.eXXnT

